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aService de Physique Théorique, CNRS-URA 2306 C.E.A.-Saclay,

F-91191 Gif-sur-Yvette, France
bLaboratoire de Physique Théorique,
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1. Conjecture and discussion

A fascinating AdS4/CFT3 duality was recently proposed by Aharony, Bergman, Jafferis

and Maldacena in [1] following previous interesting works [2] (for subsequent developments

see [3]). According to this duality the large N limit of a particular three dimensional

superconformal SU(N)× SU(N) Chern-Simons theory with level k is dual to M-theory on

AdS4 ×S7/Zk. Furthermore, when we take the limit k,N → ∞, with the t’Hooft coupling

λ = N/k ≡ 8g2 (1.1)

held fixed, we obtain a remarkable correspondence between a planar gauge theory and free

type IIA superstring theory in AdS4 × CP 3. We will always work in this limit.

In the beautiful paper by Minahan and Zarembo [4] the SU(4) sector of the Chern-

Simons theory was shown to be integrable to 2 loops in perturbation theory, the leading

order for this model. The OSp(2, 2|6) nested Bethe equations yielding the complete spec-

trum of all single trace operators to 2-loops were also proposed in this paper. At strong

coupling, when the theory can be described by a supercoset sigma model, integrability

was shown in [5, 6] and the finite gap construction [31 – 35, 29] of the algebraic curve was

carried in [7]. Here we propose a set of five Bethe equations yielding the spectrum of the

theory for any value of the t’Hooft coupling.

In the context of the AdS5/CFT4 such equations were proposed by Beisert and Stau-

dacher [8]. In their proposal solely a scalar factor was unfixed. This factor was latter

conjectured by Beisert, Eden and Staudacher in [9]. For an incomplete list of references

on the topic of integrability in AdS/CFT see [10, 11] and the several other references in

this manuscript. The Beisert-Staudacher equations are asymptotic and valid only for large

operators [12]. Our equations are also asymptotic and do not take into account wrapping
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interactions. It would be extremely interesting to investigate these type of corrections here

(see [13, 14] for related papers on such effects in the AdS5 × CFT4 duality).

We will now present our conjecture. In the end of this section we shall mention the

three main arguments supporting it and in sections 2, 3 and 4 we expand on each of

these points.

We start by defining the usual Zhukowsky variables

x +
1

x
=

u

h(λ)
,

x± +
1

x±
=

1

h(λ)

(

u ± i

2

)

. (1.2)

where h(λ) is a yet to be fixed function introduced in [15, 16, 26].1 It interpolates be-

tween [15, 16, 26]

h(λ) ≃ λ , at weak coupling (1.3)

and

h(λ) ≃
√

λ/2 , for large values of the t’Hooft coupling. (1.4)

In the end of this section we shall provide some speculative comments about this function.

Next we introduce five types of Bethe roots u1, u2, u3, u4 and u4̄. The spectrum of all

conserved charges is then given by the momentum carrying roots u4 and u4̄ alone from

Qn =

K4
∑

j=1

qn(u4,j) +

K4
∑

j=1

qn(u4̄,j) ,

qn =
i

n − 1

(

1

(x+)n−1
− 1

(x−)n−1

)

(1.5)

and the spectrum of anomalous dimensions (or string states energies) follows from

E = h(λ)Q2 . (1.6)

In terms of pj = 1
i log

x+
4,j

x−
4,j

and p̄j = 1
i log

x+
4̄,j

x−

4̄,j

, we have

E =

K4
∑

j=1

1

2

(
√

1 + 16h(λ)2 sin2 pj

2
− 1

)

+

K4̄
∑

j=1

1

2

(

√

1 + 16h(λ)2 sin2 p̄j

2
− 1

)

. (1.7)

1We use h(λ) instead of f(λ) because we will save the latter for the scaling function discussed below.
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Finally, and most importantly, the Bethe roots are quantized through the Bethe equations

1 =

K2
∏

j=1

u1,k − u2,j + i
2

u1,k − u2,j − i
2

K4
∏

j=1

1 − 1/x1,kx
+
4,j

1 − 1/x1,kx
−
4,j

K4̄
∏

j=1

1 − 1/x1,kx
+
4̄,j

1 − 1/x1,kx
−
4̄,j

,

1 =

K2
∏

j 6=k

u2,k − u2,j − i

u2,k − u2,j + i

K1
∏

j=1

u2,k − u1,j + i
2

u2,k − u1,j − i
2

K3
∏

j=1

u2,k − u3,j + i
2

u2,k − u3,j − i
2

,

1 =

K2
∏

j=1

u3,k − u2,j + i
2

u3,k − u2,j − i
2

K4
∏

j=1

x3,k − x+
4,j

x3,k − x−
4,j

K4̄
∏

j=1

x3,k − x+
4̄,j

x3,k − x−
4̄,j

(

x+
4,k

x−
4,k

)L

=

K4
∏

j 6=k

u4,k − u4,j + i

u4,k − u4,j − i

K1
∏

j=1

1 − 1/x−
4,kx1,j

1 − 1/x+
4,kx1,j

K3
∏

j=1

x−
4,k − x3,j

x+
4,k − x3,j

× (1.8)

×
K4
∏

j=1

σBES(u4,k, u4,j)

K4̄
∏

j=1

σBES(u4,k, u4̄,j) ,

(

x+
4̄,k

x−
4̄,k

)L

=

K4̄
∏

j 6=k

u4̄,k − u4̄,j + i

u4̄,k − u4̄,j − i

K1
∏

j=1

1 − 1/x−
4̄,k

x1,j

1 − 1/x+
4̄,k

x1,j

K3
∏

j=1

x−
4̄,k

− x3,j

x+
4̄,k

− x3,j
×

×
K4̄
∏

j

σBES(u4̄,k, u4̄,j)

K4
∏

j=1

σBES(u4̄,k, u4,j) .

The number of roots is related to the Dynkin labels of the state as in [4]. Furthermore we

must consider only solutions subject to the zero momentum condition [4]

1 =

K4
∏

j=1

x+
4,j

x−
4,j

K4̄
∏

j=1

x+
4̄,j

x−
4̄,j

⇔ Q1 = 2πm . (1.9)

The structure of the nested Bethe equations can be represented in figure 1. The function

σ is the so called dressing factor. It is given precisely by the same form as in the work of

Beisert, Eden and Staudacher except that there one had a dressing kernel σ given by

σ = σ2
BES (1.10)

manifesting the SU(2|2) ⊗ SU(2|2) symmetry of the problem whereas here we have

σ = σBES (1.11)

appearing in two equations as a consequence of the SU(2|2)A ⊕ SU(2|2)B symmetry. Fur-

thermore the coupling gAdS5 =

√
λAdS5

4π in the BES kernel should be now replaced by h(λ).

The dressing kernel can be written in a simple integral form as [17]

σBES(uj , uk) = eiθjk , θjk = χ(x+
j , x+

k ) + χ(x−
j , x−

k ) − χ(x+
j , x−

k ) − χ(x−
j , x+

k ) − (k ↔ j)

(1.12)

with

χ(x, y) = −i

∮

dz1

2π

∮

dz2

2π

1

(x − z1)(y − z2)
log Γ(1 + ih(λ)(z1 + 1/z1 − z2 − 1/z2)) (1.13)
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Figure 1: Structure of the AdS4/CFT3 Bethe equations. The several Bethe equations are organized

according to the OSp(2, 2|6) symmetry of the problem. The Dynkin diagram associated with

this symmetry group is depicted in the figure. Particularly important subsectors are two SU(2|2)

obtained by exciting solely momentum carrying roots of one of the wings (u4 or u4̄) plus an arbitrary

amount of auxiliary roots in the SU(2|2) tail (u1, u2 and u3). Equally important is the SU(2) ×
SU(2) subsector obtained by only exciting the momentum carrying roots (u4 and u4̄). When we

consider higher orders in perturbation theories a dressing kernel appears introducing extra self-

interactions for the momentum carrying roots and also a new interaction between the roots u4 and

u4̄. Perturbatively, according to our conjecture, this couples the two SU(2)’s in the SU(2)× SU(2)

sector starting at eight perturbative gauge theory loops.

integrated over the contours |z1| = |z2| = 1. This kernel interpolates between2

σBES(u, v)
λ→0→ 1 , (1.14)

at weak coupling and

σBES(uj , uk)
λ→∞→

1 − 1/x+
k x−

j

1 − 1/x−
k x+

j

(

x−
k x−

j − 1

x−
k x+

j − 1

x+
k x+

j − 1

x+
k x−

j − 1

)i(uk−uj)

≡ σAFS(uj, uk) , (1.15)

2According to our proposal the dressing phase will appear starting from the fourth nontrivial order in

perturbation theory which means eight loops. This is similar to what happened in N = 4 SYM except that

there the forth nontrivial order coincided with four loops.
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for large values of the t’Hooft coupling. σAFS is the AFS dressing kernel proposed in [18]

in the study of the quantum string Bethe equations for the AdS5 × S5 string.

There are three main reasons to believe the correctness of our proposal:

1. It exhibits an OSp(2, 2|6) global symmetry, matches the 2-loop equations of Minahan

and Zarembo [4] at weak coupling, and possesses a nontrivial set of Weyl dualities

which probably ought to be present for the correct set of Bethe equations. This will

be further explained in section 2. In appendix A we present (1.8) in the two possible

gradings obtained by applying the fermionic dualities to our equations.

2. It yields the algebraic curve of [7] in the continuum limit at strong t’Hooft coupling.

Therefore it encapsulates all superstring classical dynamics. Moreover the scalar

factor plus the finite size corrections are constrained by the string semi-classical

quantization in a very natural way. This point will be discussed in section 3.

3. Finally, it seems that the form of these equations is highly constrained, if not fixed, by

the SU(2|2) symmetry of the problem as discussed in section 4. This again mimics the

past developments in N = 4 SYM where it turned out to be case [19] (see also [20]).

In the next three sections we shall develop on each of these points. In the remain of this

section let us comment on some curious features of our proposal and mention some future

work proposals.

The BES kernel can be written in several ways. Above we used the integral represen-

tation of Dorey, Hofman and Maldacena [17]. Another useful writing of the BES kernel in

terms of the charges introduced above (1.5) is

σ(uj , uk) = eiθjk , θjk =
∑

r=2,s=r+1

cr,s [qr(xj)qs(xk) − qr(xk)qs(xj)] (1.16)

where the coefficients cr,s are given in [9]

cr,s = h(λ)δr+1,s +
1 + (−1)r+s

π

(r − 1)(s − 1)

(r + s − 2)(s − r)
+ O

(

1/
√

λ
)

. (1.17)

The leading order yields the AFS phase [18] and the next to leading order produces the

HL factor [21]. Notice furthermore that the products of the BES kernels in (1.8) can be

written as [18]

K4
∏

j=1

σBES(u4,k, u4,j)

K4̄
∏

j=1

σBES(u4,k, u4̄,j) = exp





∑

r=2,s=r+1

i cr,s (qr(x4,k)Qs − qs(x4,k)Qr)



 ,

(1.18)

with a similar expression when u4,k is replaced by u4̄,k. Written in this form, the dressing

kernel looks precisely like the one appearing in the AdS5/CFT4 duality [9] apart from a

factor of 2 and the replacement of gAdS5 =

√
λAdS5

4π by h(λ). The interaction between the

u4 and the u4̄ appears because the charges (1.5) are the sum of the charges of the u4 roots

with the charges of the u4̄ roots. There is strong evidence that this writing of dressing

kernels is fairly generic [22].

– 5 –
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So, assuming our proposal to be correct there are many interesting projects to be ad-

dressed. First of all, the amount of intermediate steps leading to the Beisert-Staudacher

equations [8] since the seminal paper [10] was quite significative [11, 31 – 35, 29, 12]. They

should be taken again for this new theory. For example, it would be interesting to under-

stand crossing symmetry for this model as done in [23] for the AdS5/CFT4 duality.

One should also understand the spectrum of bound states and relate it with the several

singularities of the S-matrix as done in [24, 17].3 We notice that when we consider each

SU(2|2) sector separately the double poles coming from the BES kernel found in [17] become

single poles. This could be related to the crossing transformation mention above. Indeed,

it was seen in [17] that to assemble the several three point vertices into box diagrams,

crossed vertices were often important and those seem to relate the two SU(2|2) present

in the AdS5/CFT4 chain. On the other hand there are eight fluctuations which from the

Bethe ansatz point of view require us to consider stacks [29] of bound states with one u4 and

one u4̄ root. For those, when fusing the Bethe equations in the usual way, by multiplying

the equations for roots u4 and u4̄, we will obtain again σ2
BES and thus the double poles

reappear consistently with the remark just done. It would be very important to understand

these points in greater detail.

We are aware that our conjecture is based on a very limited amount of data and of

course we are relying a lot on the experience acquired with the remarkable developments

in the AdS5/CFT4 duality.

Another major investigation subject that must be tackled seriously is the study of

the wrapping interactions mentioned above. After all, at the end of the day we want to

compute the spectrum of simple and small operators for any values of the t’Hooft coupling.

Finally, a more immediate and permeant problem would be to compute the interpo-

lating function h(λ) which appears in the magnon dispersion relation,

ǫ(p) ∼
√

1 + 16h(λ)2 sin2 p

2
. (1.19)

In N = 4 SYM this function is believed to be simply 16h(λ)2 = λAdS5/π for all values of

the t’Hooft coupling. In our case we know the function is more complicated but still, given

the simplicity we observe in the AdS5/CFT4 duality, it is reasonable to expect h(λ) to be

given by some simple expression. We know that the small λ expansion of h(λ)2 contains

only even powers because the perturbative Chern-Simons theory is organized in this way.

On the other hand we know that h(λ)2 ∼ λ for large values of the t’Hooft coupling (1.4).

This means the function should have a square root cut in the complex plane. An example

of such function compatible with the asymptotics (1.3) and (1.4) is4

h(λ)2 =
λ2

√
1 + 4λ2

. (1.20)

3We thank N.Dorey for discussions and explanations on this topic.
4Among some other proposals, this h(λ) was also written in [15]. We thank Tadashi Takayanagi for

pointing this out to us.
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This function behaves as

h(λ) =

√

λ

2
+ O(1/

√
λ) (1.21)

so that the O(1) term is not present. This is actually a property we must require for

the interpolating function because the leading term in (1.17) — giving the AFS phase —

should not mix with the subleading contribution — yielding the HL factor — otherwise

the strong coupling semi-classics at one world-sheet loop order will not work as we explain

in section 3.1. To check this necessary behavior we can compute the one-loop shift around

the giant magnon solution [25, 16, 26] and verify that it vanishes [27]. We also point out

the curious property of the simple function we wrote down, relating its weak and strong

coupling expansions:

h(λ) =
∞
∑

n=1

cn (2λ)2n =
∞
∑

n=1

c̃n (2λ)3−2n (1.22)

where

cn = c̃n . (1.23)

This kind of analytical behavior was seen to be present in the dressing kernel in [9]. Here

however, it is so far a simple curiosity.

Another important hint would be to analyze the radius of convergence of the planar

Chern-Simons theory. For example, in the N = 4 SYM theory we find that the values of λ

such that the argument of the square root (1.19) first vanishes are at |λ| = π2 (for p = π)

which corresponds to the radius of convergence of the gauge theory.

It would be extremely interesting to find the precise value of h(λ).

To check our conjecture it is useful to find good quantities with a smooth interpolation

from the weak to strong coupling limit. One such quantity is the (generalized) scaling

function5 f(λ) much studied in the AdS5/CFT4 duality (see for example [43, 47, 9, 42]

and references therein). In the recent paper [42] a review and definition of this quantity is

provided. It is quite an interesting quantity because it can be accessed from field theoretical

computations to very high loop order both from at weak and strong coupling [45, 46]. It

follows from our conjectured Bethe equations that this function can be trivially obtained

from the analogous quantity in N = 4 SYM from6

fCS(λ) =
1

2
fN=4(λ)

∣

∣

∣
√

λ
4π

→h(λ)
. (1.24)

This map follows from the observation, explained in appendix A.1, that the BES equa-

tions [9] (and even the FRS equations [42]) are exactly the same for the Chern-Simons

5The results concerning the scaling function presented in this paper benefited largely from discussion

with D.Serban and D.Volin whom we thank.
6The generalized scaling function can also be easily obtained from the N = 4 SYM result as

fCS

„

λ,
J

log(S)

«

=
1

2
fN=4

„

λ,
2J

log(S)

«

√

λ

4π
→h(λ)

.

.
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theory provided we replace the coupling constant as in (1.24)! Therefore, in particular,

fCS(λ) = 4h2(λ) − 4

3
π2h4(λ) +

44

45
π4h6(λ) + · · · = 4λ2 + O(λ4) , λ ≪ 1 (1.25)

at weak coupling and

fCS(λ) = 2h(λ) − 3 log 2

2π
− K

8π2

1

h(λ)
+ · · · =

√
2λ − 3 log 2

2π
+ O(1/

√
λ) , λ ≫ 1 (1.26)

at strong coupling.

The leading weak coupling value can be computed relying solely on the Minahan-

Zarembo Bethe equations, see appendix A.1, without ever using our conjectured equations.

This term was also identified in [1] (formula (4.17)). There is a factor of 4 which does not

seem to match and which ought to be understood. We comment further on this point in

appendix A.1.

Since the strong coupling asymptotics can be computed from the two leading coeffi-

cients of the dressing factor alone — which are derived in section 3 — they should certainly

be right. The leading strong coupling coefficient was also identified in [1] (formula (4.16)).

We find a precise agreement with their prediction.

In the next three sections we develop each of the three topics providing evidence

for (1.8) which we mentioned above.

2. Weak coupling limit and dualities in Bethe equations

In the weak coupling limit we have

x± → u ± i/2

h(λ)
, x → u

h(λ)
(2.1)

with h(λ) → 0. Therefore the proposed Bethe equations (1.8) simplify dramatically to

1 =

K2
∏

k=1

u1,j − u2,k + i/2

u1,j − u2,k − i/2
, (2.2)

1 =

K2
∏

k 6=j

u2,j − u2,k − i

u2,j − u2,k + i

K3
∏

k=1

u2,j − u3,k + i/2

u2,j − u3,k − i/2

K1
∏

k=1

u2,j − u1,k + i/2

u2,j − u1,k − i/2

1 =

K4
∏

k=1

u3,j − u4,k − i/2

u3,j − u4,k + i/2

K4̄
∏

k=1

u3,j − u4̄,k − i/2

u3,j − u4̄,k + i/2

K2
∏

k=1

u3,j − u2,k + i/2

u3,j − u2,k − i/2

(

u4,j + i/2

u4,j − i/2

)L

=

K4
∏

k 6=j

u4,j − u4,k + i

u4,j − u4,k − i

K3
∏

k=1

u4,j − u3,k − i/2

u4,j − u3,k + i/2

(

u4̄,j + i/2

u4̄,j − i/2

)L

=

K4̄
∏

k 6=j

u4̄,j − u4̄,k + i

u4̄,j − u4̄,k − i

K3
∏

k=1

u4̄,j − u3,k − i/2

u4̄,j − u3,k + i/2

– 8 –
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which are precisely the 2-loop Bethe equations of Minahan and Zarembo [4]. The en-

ergy becomes

E = h(λ)Q2 ≃ h(λ)2

(

Ku
∑

i

1

u2
4,j + 1/4

+

Kv
∑

i

1

u2
4̄,j

+ 1/4

)

, (2.3)

which perfectly matches with [4] with h(λ) ≃ λ at weak coupling.

This structure of the Bethe equations was guessed [4] based on the OSp(2, 2|6) sym-

metry of the problem. Bethe roots associated with bosonic nodes in the Dynkin diagram

self-interact and interact with the neighbors in the Dynkin diagram. The same holds for

fermionic roots except for the self interaction which is absent. The relative factors of ±2

or ±1 before the several i/2 in these equations are precisely predicted by the OSp(2, 2|6)
Dynkin diagram.

When generalizing to the all loop case we should keep the OSp(2, 2|6) symmetry. In

particular there exists a plethora of dualities in Bethe ansatz which transform various con-

figurations of Bethe roots into some other configurations [28 – 30]. These transformations

are the action of the Weyl group and we do not want to loose them. As shown in [8]

the fermionic dualities also hold when the fermionic nodes from the one-loop perturba-

tive Bethe equations at weak coupling are deformed to those present in the all loop BS

equations. The fermionic kernels we wrote are exactly the same as there and therefore

the fermionic dualities are also present in our equations. On the other hand, the bosonic

dualities studied in the AdS5/CFT4 in [30] are much more restrictive on the form of the

bosonic nodes. It seems hard to deform them away from their 2-loop form while keeping

the dualities valid. Notice indeed that the equation for the bosonic roots u2 in (1.8) is the

same as for the 2-loop Minahan-Zarembo equations (2.2). We will comment more on the

importance of these dualities at the end of the next section and in appendix A.

3. Strong coupling limit

In this section we analyze the strong coupling limit of the conjectured Bethe equations (1.8).

We will explain how to encode them into a single ten-sheeted Riemann surface. Then we

will obtain a precise match between this surface and the algebraic curve recently proposed

in [7]. This is an important check of our conjecture. In particular it shows that all the

quasi-classical results from the string theory side are automatically incorporated into our

equations.

To obtain the string classical limit the Bethe roots should scale as

√

λ/2 ∼ ua,j ∼ Ka ∼ L ≫ 1 ,

so that

x± = x ± i

2
α(x) + O

(

1

λ

)

where

α(x) ≡ 1

h(λ)

x2

x2 − 1
.
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This very same function was also introduced in [7]. To present the result of the expansion

of the Bethe equations in the scaling limit, it is convenient to introduce the resolvents

Ga(x) =
∑

j

α(xa,j)

x − xa,j
, Ha(x) =

∑

j

α(x)

x − xa,j
, H̄a(x) = Ha(1/x) , Ḡa(x) = Ga(1/x) .

In the limit Ka → ∞ the roots xa,j condense into some cuts in the complex plane and these

sums could be replaced by integrals using the densities of the Bethe roots [31 – 35, 29].

First we expand the charges Qn (1.5) in the scaling limit to find

G4(x) + G4̄(x) = −
∞
∑

n=0

Qn+1x
n , (3.1)

so that in particular, from (1.6) and (1.9), we have

2πm = −G4(0) − G4̄(0) , E = −2g
(

G′
4(0) + G′

4̄(0)
)

. (3.2)

Now we have all the necessary ingredients to present the expansion of the Bethe ansatz

equations (1.8) in the classical scaling limit. We find

2πn1 = −Q1 + xQ2

x2 − 1
− H2 − H̄2 + H̄4 + H̄4̄ , x ∈ C1 (3.3)

2πn2 = −H1 + 2 /H2 − H3 − H̄1 + 2H̄2 − H̄3 , x ∈ C2 (3.4)

2πn3 = +
Q1 + xQ2

x2 − 1
− H2 + H4 + H4̄ − H̄2 , x ∈ C3 (3.5)

2πn4 =
Lx/2g −Q1

x2 − 1
+ H3 − 2 /H4 + H̄1 − H̄4 + H̄4̄ , x ∈ C4 (3.6)

2πn4̄ =
Lx/2g −Q1

x2 − 1
+ H3 − 2 /H 4̄ + H̄1 − H̄4 + H̄4̄ , x ∈ C4̄ . (3.7)

where a slash stands for the average of the function above and below the cut. To obtain

these equations we first take the log of both sides of (1.8) and obtain in this way the

several 2πna coming from the various possible choices for the log branches. Furthermore,

the products in (1.8) become sums and in the scaling limit the summands can be expanded

and simplified and we recognize the several resolvents introduced above.

Notice that to obtain these equations in the scaling limit the asymptotics (1.15) are

important and so is the fact that the u4 and u4̄ roots in (1.8) are coupled in the way

indicated there. The fact that we will obtain a perfect match with the algebraic curve

in [7] is therefore an important argument in favor of such structure in (1.8). See also the

next subsection and the discussion in section 4 for further evidence.

Now the most important point: these equations for the resolvents imply that the
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following five quasi-momenta

q3(x) =
Lx/2g −Q1

(x2 − 1)
− H1 + H̄4 + H̄4̄ − H̄3 ,

q2(x) =
Lx/2g + Q2x

(x2 − 1)
+ H2 − H1 − H̄3 + H̄2 ,

q1(x) =
Lx/2g + Q2x

(x2 − 1)
+ H3 − H2 − H̄2 + H̄1 , (3.8)

q4(x) =
Lx/2g −Q1

(x2 − 1)
− H4 − H4̄ + H3 + H̄1 ,

q5(x) = +H4 − H4̄ + H̄4 − H̄4̄ ,

together with {−q1(x), . . . ,−q5(x)}, form an algebraic curve. More precisely {eqi , e−qi}
should be regarded as ten branches of the same analytical function.

To see this let us pick a pair of quasimomenta, say q1 and q2, and consider the values

of these functions immediately above and below a cut resulting from the condensation of

a large number of u2 Bethe roots. More precisely let us compute their discontinuity and

average for values of x belonging to the cut.

By definition the discontinuities of q2 and −q1 on the cut C2 are equal (and proportional

to the density of the x2,j roots)

q2(x + i0) − q2(x − i0) = −q1(x − i0) + q1(x + i0) , x ∈ C2 . (3.9)

Then we notice that the equation (3.4) could be cast into

q2(x + i0) + q2(x − i0) = q1(x + i0) + q1(x − i0) + 4πn2 , x ∈ C2 . (3.10)

These two equations are equivalent to

eiq2(x+i0) = eiq1(x−i0) , eiq2(x−i0) = eiq1(x+i0) , x ∈ C2 , (3.11)

which means that the functions eiq2(x) and eiq1(x) are glued to each other by the cut C2.

Proceding like this for the several quasi-momenta we can see that the 10 sheets are nicely

glued together into a single Riemann surface.

This was the most nontrivial part. Now we simply need to identify the various ana-

lytical properties of the quasi-momenta defined above and check that they match precisely

those appearing in the classical finite gap construction of [7].

First notice that q1, q2 and q3, q4 are simply related by the inversion symmetry x → 1/x

while q5 is symmetric with respect to this transformation. Exactly the same behavior was

found in the string algebraic curve [7]. The large x asymptotics also match. For example,

from the definition of q1 we see that

q1(x) ≃ L + E + K3 − K2

2gx
(3.12)

which is precisely the expression in [7]. Finally it is easy to see that the pole structure

at x = ±1 is also as in [7]. In particular we observe the nontrivial synchronization of the
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residues of the several quasi-momenta which in [7] appear as a consequence of the string

Virasoro constrains. For example, we expect the difference

q1 − q4 =
Q2x + Q1

x2 − 1
+ H4 + H4̄ − H2 − H̄2 (3.13)

to be regular at x = ±1 The combination H2 + H̄2 is regular at x = ±1 and the sum

H4 + H4̄ is directly related to the conserved charges Q1 and Q2 in a way that together

with the first term we obtain a completely regular expression. The other quasi-momenta

can be analyzed in a similar fashion.

This completes the comparison of all the analytical properties of the finite gap and

Bethe ansatz quasi-momenta with a perfect match for every one of them.

3.1 Semi-classical dressing factor

To further check our conjecture let us compute the first leading correction to the AFS dress-

ing kernel. We did this computation once in the context of the AdS5/CFT4 — where the

first quantum correction to the dressing kernel is given by the Henernadez-Lopez phase [21]

— in [36] therefore we will be extremely brief now and omit the details. We refer to [36]

for further details.

The idea is that to get the 1-loop worldsheet correction to the energy and the other local

charges one should add zero point oscillations around the classical solution (see e.g. [37]7).

Each mode of the oscillation corresponds to a particular small deformation of the classical

solution. In the language of the algebraic curve each mode corresponds to a new pole with

a tiny residue. More precisely exciting a solution by a mode implies to add a fluctuation

to a quasimomentum [39, 40]

δq(x) ∼ ± α(x)

x − xn
. (3.14)

The fluctuations have different polarizations which are summarized in the figure 2. They

correspond to different quasimomenta which should be excited. For example the first

excitation on the figure 2. is labeled by 45 which means that only q4 and q5 should have

extra poles (3.14) when the classical solution is excited by that fluctuation. One should

think about these poles as being a very small cut connecting q4 and q5 therefore the residues

should have opposite signs. The points on the curve where one can open a small cut are

some special loci where the sheets of the curve are crossing each other. These points can

be found from the equation

qi(xn) − qj(xn) = 2πn . (3.15)

The integer numbers n’s are called mode numbers and are the analogues of the Fourier

mode numbers in the flat space.

7This result was proposed in [37] in the context of the AdS5/CFT4 duality, that is for type IIB strings

described by a coset like Matsaev-Tseytlin action [38]. In the context of the AdS4/CFT3 duality considered

in the current paper we deal with type IIA strings described by a very similar worldsheet coset action [5, 6]

and therefore there is a priori no reason to suspect any troublesome issues arising. Still, for both type IIA

and IIB strings, it would be very interesting to provide a rigorous prove of the relation between the first

quantum correction to the energy and the sum over fluctuations, maybe following along the lines of [40]

where such rigorous semi-classical analysis was done for the SU(2) principal chiral field.
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Zero point oscillations correspond to the sum over halves of all possible fluctuations [40,

39]. In this way, the charges computed for these excited quasimomenta automatically gain

a ground zero shift as predicted from field theory. We should therefore add each fluctuation

in figure 2 with a 1/2 factor for bosonic excitations and a factor of −1/2 for the fermionic

fluctuations and sum over the mode number n of these fluctuations. For our goal we can

replace sum over n by an integral. Then we replace the variable n by the position x of the

corresponding fluctuation using (3.15) so that dn = (q′i − q′j)dx/2π.

Let us then look at the shift in the quasi-momenta q5 = −q6. From what we ex-

plained we see that there are only 4 bosonic fluctuations 45, 46, 35, 36 and 4 fermionic ones

25, 26, 15, 16.

δq5 =
1

2

∫

dy

2π

α(x)

x − y

(

(q′4 − q′5) − (q′4 − q′6) + (q′3 − q′5) − (q′3 − q′6)
)

(3.16)

−1

2

∫

dy

2π

α(x)

x − y

(

(q′2 − q′5) − (q′2 − q′6) + (q′1 − q′5) − (q′1 − q′6)
)

+(x → 1/x)

= 0 (3.17)

Thus q5 is not shifted. Next let us consider the shift in q4 = −q7. Again we should only

consider fluctuations from the figure 2 with labels 4 or 7. We find three bosonic excitations

45, 46, 37 and two fermionic poles 27, 17 so that

δq4 =
1

2

∫

dy

2π

α(x)

x − y

(

−(q′4 − q′5) − (q′4 − q′6) − (q′3 − q′7) + (q′2 − q′7) + (q′1 − q′7)
)

(3.18)

−1

2

∫

dy

2π

α(1/x)

1/x − y

(

−(q′3 − q′5) − (q′3 − q′6) − (q′3 − q′7) + (q′2 − q′8) + (q′1 − q′8)
)

The second line is added to satisfy the x → 1/x symmetry of the algebraic curve [7], which

relates q4 and q3. This expression can be simplified to

δq4 =
1

2

∫

dy

2π

(

α(x)

x − y
− α(1/x)

1/x − y

)

∂y (q1 + q2 − q3 − q4) (3.19)

using that from (3.8)

q1 + q2 − q3 − q4 = 2
Q1 + xQ2

x2 − 1
+ H4 + H4̄ − H̄4 − H̄4̄ = Q1 + G4 + G4̄ − Ḡ4 − Ḡ4̄ .

Then, since G4 + G4̄ = −∑n=0 Qn+1y
n, we get

δq4(x) =
1

2
V(x) , V(x) = α(x)

∞
∑

r=2,s>r

1 + (−1)r+s

π

(r − 1)(s − 1)

(s − r)(r + s − 2)

(Qr

xs
− Qs

xr

)

,

which in is precisely the Hernandez-Lopez phase (1.17)! Repeating the computation for q1

and q2 will lead to the same result.

Notice that all the quasimomenta q1, . . . , q4 are shifted by the same amount while

q5 is not shifted at all. This is precisely what ensures that these quantum fluctuations
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4AdS

CP3

Fermions

45/67 46/57 35/68 36/58 37/48

25/69 26/59 15/6 16/5

27/49 17/4 28/39 18/3

10 10

10 10

29/29 19/2 1 /110 1010

Figure 2: The several states in the Hilbert space can be constructed in the usual oscillator rep-

resentation. There is one oscillator per Dynkin node of the OSp(2, 2|6) super Dynkin diagram. A

light (dark) gray shaded node corresponds to an oscillator excited once (twice). The number of

times each oscillator is excited is the same as the number of Bethe roots of the corresponding type.

can be traded for the insertion of a dressing phase e−iV/2 in the momentum carrying

nodes. Indeed, recall that each Bethe equation (1.8) in the scaling limit is obtained by

considering the difference of two consecutive quasi-momenta. The fact that all the first 4

quasimomomenta are shifted by the same amount means the first three equations do not

need to be modified. On the other hand the equations for the momentum carrying nodes

which follow from q+
4 − q−5 = 2πn and q+

4 + q−5 = 2πn are modified by the potential we just
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derived.8 Recall moreover that according to (1.18) the correction we found points again

towards an interaction between the roots u4 and u4̄ as announced in (1.8). See the previous

subsection as well as section 4 for further evidence for this structure.

Notice that for all the argument to go through it is important that the function h(λ)

mentioned in the introduction contains no O(1) term in the large λ expansion as mentioned

in the introduction.

Let us come back to the dualities in the Bethe ansatz equations mentioned in sec-

tion 2. The 1/
√

λ effects present in the string semi-classical quantization are accounted by

the Hernandez-Lopez dressing phase. But there is also another type of correction which

appears at the same order and must also be taken into account to obtain a complete agree-

ment between the BAE (1.8) and the string semiclassical spectrum. These corrections are

the ones appearing from the finite size corrections errors introduced when going to the

continuum limit and expanding the roots in the scaling limit. In [30] we showed that these

corrections were precisely of the required form to ensure the proper match with the string

semi-classical quantization around any classical configuration. To be able to derive this it

was crucial that the dualities mentioned in the previous section existed and it seems to us

very unlikely that without such dualities a match would take place.

4. SU(2|2) symmetry and the dressing kernel

As shown in the first two lines of figure 2, there are four fluctuations where u4̄ roots

are not excited and four fluctuations where u4 roots are not excited. These are the two

4 dimensional short representations of the two SU(2|2) subsectors found in [4, 16]. As

explained in [16] each SU(2|2) sector is centrally extended in the exact same way as observed

in the AdS5/CFT4 duality by Beisert [19] (see also [41]). The value of the central charge

is related to h(λ) mentioned in the introduction and this fixes the dispersion relation to be

of the form (1.7) [19, 16].

Moreover, as explained in [19] the Bethe equations for a system with SU(2|2) extended

symmetry are completely fixed up to a scalar factor. This is indeed built in our conjectured

equations (1.8). Namely, if we focus on one of the SU(2|2) sub-sectors — by considering

for example no u4̄ roots — equations (1.8) reduce to the Bethe equations for a SU(2|2)
extended symmetric system [19]. Equations (1.8) are the most natural way to combine

the SU(2|2) ⊕ SU(2|2) symmetry in a OSp(2, 2|6) symmetric system of Bethe equations.

Figure 2 also seems to indicate that the remaining 8 fluctuations organize into a (4|4)
multiplet as argued in [16].

Note that since we deal with a SU(2|2)⊕ SU(2|2) symmetry, rather than the SU(2|2)2
in the Beisert-Staudacher equations [8, 19], we have two momentum carrying nodes (for u4

and for u4̄) each of them with its own dressing Kernel. The dressing kernel for each node

8In [36] we obtained exactly the same expression 1
2
V in terms of the charges for the first four quasi-

momenta there, p1, . . . , p4 while for the last four we obtained − 1
2
V. Therefore when we considered the

difference of consecutive quasimomenta we concluded that only the middle node was modified and the

modification was 1
2
V −

`

− 1
2
V

´

which is precisely twice as much as here, precisely in agreement with the

discussion in the introduction.
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is moreover the square root of the dressing kernel present in the AdS5/CFT4 duality. This

is probably also a consequence of the symmetries of the theory. As recalled by Janik and

Lukowski in [48] there is usually a strong relation between the dressed part of the Bethe

equations and the dressing kernel of the momentum carrying nodes. The idea is that

in integrable field theories the scalar factor can be expressed as a convolution of simple

kernels appearing in the nested levels of the Bethe ansatz equations. This is of course

an empirical observation but so far it seems to work. In our nested Bethe equations we

have two momentum carrying nodes. On top of each of these there is a SU(2|2) tower —

see figure 1. On the other hand, in the Beisert-Staudacher equations, we have a single

momentum carrying node connected with two SU(2|2) wings. Thus it is very natural to

expect that the dressing phase for each of our momentum carrying roots is simply half of

that obtained in the AdS5/CFT4 duality in [9].

In (1.8) the momentum carrying roots u4 and u4̄ are also connected by a BES dressing

kernel [9] which takes exactly the same form as the kernel appearing in the self-interaction

of the momentum carrying roots, see figure 1. We already found evidence for the precise

structure in the previous sections where we studied the strong coupling limit of the Bethe

equations. Here we will argue from another point of view why this structure is to be

expected.

First we need to recall the observation of [49]. In this paper, following [50], inte-

grable relativistic SO(n) sigma models were considered. The quantization of such models

is obtained by solving a set of Bethe equations which quantize the physical momenta of

the relativistic particles and the isotopic momenta of the SO(n) spin waves. In [49] it

was understood how to eliminate the physical momenta from these Bethe equations to

obtain an effective equation for the spin isotopic degrees of freedom. In the classical limit,

the effective equations were then seen to match not only the classical algebraic curves

in [31, 33] but also the conjectured string Bethe equations [18] studied in the context of

integrability in AdS5/CFT4. This was possible because in the classical limit the string

motion can be consistently truncated to a Sn subspace in AdS5 × S5. It is clear that we

can learn a lot about the structure of the strong coupling limit of the AdS/CFT Bethe

equations from these simpler relativistic toy models. For example, to learn about the

structure of the SU(2) × SU(2) closed sector of the ABJM Chern-Simons theory theory,

recently studied in [26], a nice toy model is the SU(2) principal chiral field whose symmetry

is SU(2)L × SU(2)R. The spectrum of this model is found from solving the Nested Bethe

equations [51, 52]

e−iLp(θα) =
∏

β 6=α

S 2
0 (θα − θβ)

∏

j

θα − u4,j + i/2

θα − u4,j − i/2

∏

k

θα − u4̄,k + i/2

θα − u4̄,k − i/2
, (4.1)

1 =
∏

β

u4,j − θβ − i/2

u4,j − θβ + i/2

∏

i6=j

u4,j − u4,i + i

u4,j − u4,i − i
, (4.2)

1 =
∏

β

u4̄,k − θβ − i/2

u4̄,k − θβ + i/2

∏

l 6=k

u4̄,k − u4̄,l + i

u4̄,k − u4̄,l − i
, (4.3)

where S0 is a known function whose explicit form is not relevant for our discussion. We
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can now understand what happens when we find the position of the Bethe roots θα from

the first equation and plug them into the last two equations (4.2), (4.3). We will obtain in

this way two effective equations for the two spin rapidities associated with each of the two

SU(2) symmetry groups. Without any computation at all it is already possible to learn a

lot about the symmetry of the obtained equations. In the classical limit we take the log

of these equations and transform the obtained sums into integrals. The density of θ roots

obtained by solving the first (integral) equation is clearly of the form

ρ(θ) = ρ0(θ) +

K4
∑

j=1

ρ1(θ, u4,j) +

K4̄
∑

j=1

ρ1(θ, u4̄,j) . (4.4)

Notice that there is a single function ρ1 in the last two terms. This follows trivially from the

fact that the u4 and u4̄ enter in (4.1) in equal footing but will have important consequences.

When we integrate out the physical rapidities in each of the products in the last two Bethe

equations (4.2), (4.3) using ρ(θ), we will generically find

1 = F (u4,j)

K4
∏

i=1

σ(u4,j , u4,i)

K4̄
∏

i=1

σ(u4,j , u4̄,i)

K4
∏

i6=j

u4,j − u4,i + i

u4,j − u4,i − i
,

1 = F (u4̄,j)

K4
∏

i=1

σ(u4̄,j, u4,i)

K4̄
∏

i=1

σ(u4,j , u4̄,i)

K4̄
∏

i6=j

u4̄,k − u4̄,l + i

u4̄,k − u4̄,l − i
.

The first term F (u) comes from the contribution from ρ0 and the first two products in each

line come from the convolutions with the last two terms with ρ1 in (4.4). F (u) should be

thought of as eiLpeff (u), an effective dispersion relation for the SU(2) magnons. As for σ, it

appears as a new effective self-interaction that emerges in the u4 and u4̄ equations but also

as a kernel coupling the two SU(2)! The coupling kernel and the new self interactions are

therefore, by simple symmetry arguments, exactly the same! This shows that the structure

we propose for the interaction of the momentum carrying nodes of the AdS3/CFT4 Bethe

equations is not exotic at all but rather what we would expect.

This is even more so when we recall [49] that, when this procedure is carried in detail in

the classical limit, the effective dispersion relations which appear are exactly the (x+/x−)
L

appearing in our equations and, moreover, the kernels σ are precisely of the AFS form!

The AFS kernel [18] seems to be highly universal and it is nice to see that it fits neatly in

our conjectured equations.9
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A. Fermionic dualities

We can transform our equations (1.8) into an equivalent set of Bethe equations by appli-

cation of the fermionic dualities. This follows [8] closely. We construct the polynomial

P (x) =

K4
∏

j=1

(x − x+
4,j)

K4̄
∏

j=1

(x − x+
4̄,j

)

K2
∏

j=1

(x − x−
2,j)(x − 1/x−

2,j)

−
K4
∏

j=1

(x − x−
4,j)

K4̄
∏

j=1

(x − x−
4̄,j

)

K2
∏

j=1

(x − x+
2,j)(x − 1/x+

2,j) (A.1)

and by virtue of the Bethe equations (1.8) for the fermionic roots u1 and u3 we find that

this polynomial has zeros for x = x3,j and for x = 1/x1,j so that

P (x) =

K3
∏

j=1

(x − x3,j)

K1
∏

j=1

(x − 1/x1,j)

K̃3
∏

j=1

(x − x̃3,j)

K̃1
∏

j=1

(x − 1/x̃1,j) (A.2)

where the x̃ are the remaining zeros of the polynomial. Then by equating (A.1) and (A.2)

and evaluating this relation at some particular values like x+
4,k, x−

4̄,k
, x−

3,k etc (see [8] for
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details) we find several relations between the tilded x̃1 and x̃3 and the original Bethe roots

x1 and x3. In particular we see that the old Bethe roots x1 and x3 can be replaced by their

tilded counterparts provided we modiify the Bethe equations to

1 =

K2
∏

j=1

u1,k − u2,j + i
2

u1,k − u2,j − i
2

K4
∏

j=1

1 − 1/x1,kx+
4,j

1 − 1/x1,kx−
4,j

K4̄
∏

j=1

1 − 1/x1,kx+
4̄,j

1 − 1/x1,kx−
4̄,j

,

1 =

K2
∏

j 6=k

u2,k − u2,j − i

u2,k − u2,j + i

K1
∏

j=1

u2,k − u1,j + i
2

u2,k − u1,j − i
2

K3
∏

j=1

u1,k − u3,j + i
2

u1,k − u3,j − i
2

,

1 =

K2
∏

j=1

u3,k − u2,j + i
2

u3,k − u2,j − i
2

K4
∏

j=1

x3,k − x+
4,j

x3,k − x−
4,j

K4̄
∏

j=1

x3,k − x+
4̄,j

x3,k − x−
4̄,j

(

x+
4,k

x−
4,k

)L

=

K4
∏

j 6=k

u4,k − u4,j + i

u4,k − u4,j − i

K1
∏

j=1

(

1 − 1/x−
4,kx1,j

1 − 1/x+
4,kx1,j

)η K3
∏

j=1

(

x−
4,k − x3,j

x+
4,k − x3,j

)η

× (A.3)

×
K4
∏

j 6=k

σBES(u4,k, u4,j)

(

x−
4,k−x+

4,j

x+
4,k−x−

4,j

)
1−η

2 K4̄
∏

j=1

σBES(u4,k, u4̄,j)

(

x−
4,k−x+

4̄,j

x+
4,k−x−

4̄,j

)
1−η

2

,

(

x+
4̄,k

x−
4̄,k

)L

=

K4̄
∏

j 6=k

u4̄,k − u4̄,j + i

u4̄,k − u4̄,j − i

K1
∏

j=1

(

1 − 1/x−
4̄,k

x1,j

1 − 1/x+
4̄,k

x1,j

)η K3
∏

j=1

(

x−
4̄,k

− x3,j

x+
4̄,k

− x3,j

)η

×

×
K4̄
∏

j 6=k

σBES(u4̄,k, u4̄,j)

(

x−
4̄,k

−x+
4̄,j

x+
4̄,k

−x−
4̄,j

)
1−η

2 K4
∏

j=1

σBES(u4̄,k, u4,j)

(

x−
4,k−x+

4̄,j

x+
4,k−x−

4̄,j

)
1−η

2

,

where η = −1. We removed the tilde’s from all the x̃1 and x̃3. Equations (A.3) for the

gradings η = ±1 are two dual ways of writing the same Bethe equations. They correspond

to different choice of Dynkin diagrams which, we recall, for superalgebraic is not unique.

The two possible structures are presented in figure 3.

A.1 Scaling function

In this section we will explain that there is a particular configuration of Bethe roots gov-

erned by absolutely the same equations as obtained in the AdS5/CFT4 duality. It is useful

to work with the dualized equations (A.3) with η = −1. Then we consider a configuration

of Bethe roots with the same number of u4 and ū4 roots whose positions we take to be the

same,

u4,k = u4̄,k ≡ uk , k = 1, . . . , S ≫ 1 , (A.4)

and no auxiliary roots. Then both momentum carrying nodes yield identical equations for

the positions uk,

(

x+
k

x−
k

)L

= −
S
∏

j 6=k

uk − uj + i

uk − uj − i

(

x−
k − x+

j

x+
k − x−

j

)2

σ2
BES(uk, uj) . (A.5)

Notice that the kernel becomes squared so that these equations are precisely the SL(2) BAE

appearing in the AdS5/CFT4 Beisert-Staudacher equations except for the extra minus sign

– 19 –



J
H
E
P
0
1
(
2
0
0
9
)
0
1
6

in the r.h.s! In particular they are the starting point for the construction of the Eden-

Staudacher [47], Beisert-Eden-Staudacher [9] and Freyhult-Rej-Staudacher equations [42]

where the scaling function is studied thoroughly. The minus sign will mean that the mode

numbers corresponding to the ground state will not be n = ±1 but rather n = ±1/2 and

this will halve all results. Therefore we conclude that — modulo the replacement of
√

λ

by 4πh(λ) and the division by 2 as explained in the introduction — the scaling function is

precisely the same! For the generalized scaling function we obtain10

fCS

(

λ,
J

log(S)

)

=
1

2
fN=4

(

λ,
2J

log(S)

)

√
λ

4π
→h(λ)

. (A.6)

In the dual version of the Bethe equations we obtained the bosonic SL(2) sector by

considering pairs of excitations in the two fermionic nodes. In the original grading repre-

sented in figure 1 this amounts to taking K4 = K4̄ = 2K3 which from figure 2 is clearly

seen to have the appropriate quantum numbers to be called an SL(2) sector.

In the weak coupling limit from (A.5) and (1.6) we find

(

u + i/2

u − i/2

)L

= −
S
∏

j 6=k

uk − uj − i

uk − uj + i
, E =

∑ 2λ2

u2
j + 1

4

(A.7)

so that, from [47], we find

E = 4λ2 log S . (A.8)

where the 4 prefactor instead of the 8 comes from the half-integer mode numbers as ex-

plained above. Notice that to obtain this weak coupling result we need not use our con-

jectured equations at all. We could simply use the Minahan-Zarembo 2-loop equations to

arrive at precisely the same result. Comparing with [1] (equation 4.17) we see that there

is a mismatch by a factor of 4 which would be interesting to understand.
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